This part of AS/NZS 60079 contains the specific requirements for the design, selection and erection of electrical installations in hazardous areas associated with explosive atmospheres.
Where the equipment is required to meet other environmental conditions, for example, protection against ingress of water and resistance to corrosion, additional methods of protection may be necessary. The method used shall not adversely affect the integrity of the enclosure.

Adopted with national modifications from IEC 60079-14, Ed. 4.0(2007).

Scope

Where the equipment is required to meet other environmental conditions, for example, protection against ingress of water and resistance to corrosion, additional methods of protection may be necessary. The method used shall not adversely affect the integrity of the enclosure.

The requirements of this Standard apply only to the use of equipment under normal or near normal atmospheric conditions. For other conditions, additional precautions may be necessary. For example, most flammable materials and many materials which are normally regarded as non-flammable might burn vigorously under conditions of oxygen enrichment. Other precautions might also be necessary in the use of equipment under conditions of extreme temperature and pressure. Such precautions are beyond the scope of this Standard.

The requirements specified in this Standard are supplementary to and not alternative to any requirements given in AS/NZS 3000. Any alterations or modifications to AS/NZS 3000 in this document are specifically stated.

This Standard applies to all electrical equipment including fixed, portable, transportable and personal, and installations, permanent or temporary.

It applies to installations at all voltages.

This Standard does not apply to -

- inherently explosive situations and dust from explosives or pyrophoric substances (for example explosives manufacturing and processing);
- rooms used for medical purposes;
- other than group I, electrical installations in areas where the hazard is due to hybrid mixtures of combustible dust and explosive gas, vapour or mist.

No account is taken in this Standard of the toxic risks that are associated with most flammable gasses and liquids in concentrations that are usually very much less than the lower explosive limit. In locations where personnel may be exposed to potentially toxic concentrations of flammable material, appropriate precautions should be taken. Such precautions are outside the scope of this Standard. This Standard also does not take into account of any risk due to an emission of flammable or toxic gas from dusts.

For assistance with locating previous versions, please contact the information provider.
This part of AS/NZS 60079 contains the specific requirements for the design, selection and erection of electrical installations in hazardous areas associated with explosive atmospheres.

Where the equipment is required to meet other environmental conditions, for example, protection against ingress of water and resistance to corrosion, additional methods of protection may be necessary. The method used shall not adversely affect the integrity of the enclosure.

Adopted with national modifications from IEC 60079-14, Ed. 4.0(2007).

View on Information Provider website
Table of Contents

1 Scope

2 Normative References

3 Terms And Definitions

3.1 General

3.2 Hazardous Areas

3.3 Flameproof Enclosure

3.4 Increased Safety 9

3.5 Intrinsic Safety – General

3.6 Intrinsic Safety Parameters

3.7 Pressurization

3.8 Type Of Protection 'N'

3.12 Dust Ignition Protection

3.13 Electrical Supply Systems
3.14 Equipment

4 General

4.1 General Requirements

4.2 Documentation

4.3 Assurance Of Conformity Of Equipment

4.4 Competency qualifications Of Personnel

5 Selection Of Equipment (Excluding Cables And Conduits)

5.1 Information Requirements

5.2 Zones

5.3 Relationship Between Equipment Protection Levels (EPLs) And Zones

5.4 Selection Of Equipment According To EPLs

5.5 Selection According To Equipment Grouping

5.6 Selection According To The Ignition Temperature Of The Gas, Vapour Or Dust And Ambient Temperature

5.7 Selection Of Radiating Equipment For Dust

5.8 Selection Of Ultrasonic Equipment For Dust

5.9 External Influences

5.10 Light Metals As Construction Materials

5.11 Transportable, Portable And Personal Equipment

5.12 Selection Of Rotating Electrical Machines
5.13 Luminaires

5.14 Plugs And Socket Outlets For Dust

6 Protection From Dangerous (Incentive) Sparking

6.1 Danger From Live Parts

6.2 Danger From Exposed And Extraneous Conductive Parts

6.3 Potential Equalization

6.4 Static Electricity

6.5 Lightning Protection

6.6 Electromagnetic Radiation

6.7 Cathodically Protected Metallic Parts

6.8 Ignition By Optical Radiation

7 Electrical Protection

7.1 General

7.2 Rotating Electrical Machines

7.3 Transformers

7.4 Resistance Heating Devices

8 Emergency Switch-Off And Electrical Isolation

8.1 Emergency Switch-Off

8.2 Electrical Isolation

9 Wiring Systems
9.1 General
9.2 Aluminium Conductors
9.3 Cables
9.4 Conduit Systems
9.5 Cable And Conduit Systems
9.6 Installation Requirements

10 Additional Requirements For Type Of Protection 'D' – Flameproof Enclosures
10.1 General
10.2 Solid Obstacles
10.3 Protection Of Flameproof Joints
10.4 Cable Entry Systems
10.5 Conduit Systems
10.6 Motors

11 Additional Requirements For Type Of Protection ‘E’ – Increased Safety
11.1 Degree Of Ingress Protection Of Enclosures (IEC 60034-5 And IEC 60529)
11.2 Wiring Systems
11.3 Cage Induction Motors
11.4 Luminaires
12 Additional Requirements For Types Of Protection 'I' – Intrinsic Safety

12.1 Introductory Remark

12.2 Installations To Meet The Requirements Of EPL 'GB' Or 'GC'

12.3 Installations To Meet The Requirements Of EPL 'Ga'

12.4 Special Applications

13 Additional Requirements For Pressurized Enclosures

13.1 Type Of Protection 'P'

13.2 Motors

13.3 Type Of Protection 'PD'

13.4 Rooms For Explosive Gas Atmosphere

14 Additional Requirements For Type Of Protection 'N'

14.1 General

14.2 Degree Of Ingress Protection Of Enclosures (IEC 60034-5 And IEC 60529)

14.3 Wiring Systems

14.4 Motors

14.5 Luminaires

15 Additional Requirements For Type Of Protection 'O'– Oil Immersion
16 Additional Requirements For Type Of Protection 'Q' – Powder Filling

17 Additional Requirements For Type Of Protection 'M' – Encapsulation

18 Additional Requirements For Type Of Protection 'Td' – Protection By Enclosure

18.1 Practices A And B

18.2 Practice A

18.3 Practice B

18.4 Motors Supplied At Varying Frequency And Voltages

19 Protection By Ventilation Ex ‘81

Annexes

Annex A (Normative) Verification Of Intrinsically Safe Circuits With More Than One Associated Apparatus With Linear Current/Voltage Characteristics

Annex B (Informative) Methods Of Determining The Maximum System Voltages And Currents In Intrinsically Safe Circuits With More Than One Associated Apparatus With Linear Current/Voltage Characteristics (As Required By Annex A)

Annex C (Informative) Determination Of Cable Parameters

Annex D (Informative) Safe Work Procedure Guidelines For Explosive Gas Atmospheres

Annex F (Normative) Knowledge, Skills And Competencies Of Responsible Persons, Operatives And Designers

Annex G (Informative) Examples Of Dust Layers Of Excessive Thickness

Annex H (Normative) Frictional Sparking Risks With Light Metals And Their Alloys

Annex I (Informative) Introduction Of An Alternative Risk Assessment Method Encompassing “Equipment Protection Levels” For Ex Equipment

Annex ZA (Normative) Specific Occupancies

Annex ZB (Normative) Statement Of Periodic Verification (New Zealand Only)

Annex ZC (Informative) Information Relating To Ausex, Anzex And Iecex Certification Schemes

Annex ZD (Informative) Conformity Assessment Documents

Annex ZE (Normative) Risk Assessment For EPLs

Bibliography